Sains Malaysiana 53(9)(2024): 3071-3083

http://doi.org/10.17576/jsm-2024-5309-13

 

Synergistic Effect of Plant Growth Promoting Rhizobacteria and Cirsium arvense against Black Scurf Disease of Potato

(Kesan Sinergi Pertumbuhan Tumbuhan Menggalakkan Rizobakteria dan Cirsium arvense terhadap Penyakit Scurf Hitam Kentang)

 

KARAMAT ALI ZOHAIB, UZMA BASHIR*, IQRA HAIDER KHAN, ARSHAD JAVAID & WAHEED ANWAR

 

Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan

 

Diserahkan: 31 Januari 2024/Diterima: 6 Julai 2024

 

Abstract

Potato (Solanum tuberosum L.) is an important cash crop of Pakistan. Black scurf of potato is a very important disease that is caused by Rhizoctonia solaniKühn. In this study, management of black scurf of potato was done through biocontrol method by using plant growth promoting rhizobacteria (PGPR) and dry biomass of a weed, Cirsium arvense(L.) Scop. In vitro antagonistic interactions were carried out to assess the potential of two strains of PGPR namely Bacillus megaterium ZMR6 and Pseudomonas fluorescence PF180 against the fungal growth. P. flourescens showed marked antagonistic activity causing 65% reduction in growth of the fungus as compared to 43% reduction due to B. megaterium. Likewise, in laboratory bioassays, methanolic extract of 2, 4 and 6% concentrations of leaf, stem, and root of C. arvense reduced biomass of R. solaniby 64-71%, 42-53% and 26-47%, respectively. In pot experiment, the two PGPR species and different doses of C. arvensedry biomass (CDB) viz. 1, 2 and 3% (w/w) were used as soil amendment separately as well as in combination to control the disease. There were 13 treatments, which included a negative control; a positive control (R. solanionly); 1, 2 and 3% CDB (separately) together with R. solani, two PGPR species (separately) plus R. solani; different combinations of two PGPR species and CDB together with R. solani. Potato variety Sante was used as test plant. The highest disease incidence (91%) and disease severity (rating scale 4) were observed in positive control (with R. solani only). R. solanisignificantly reduced biomass of tubers by 52% over negative control. All the treatments significantly enhanced tuber biomass by 18-166% over positive control. The best combination was 3% CDB + P. florescence where minimum disease incidence (3%) and severity (mean disease rating 0.2) were recorded. This treatment also showed the highest tubers yield that was 29% and 166% higher as compared to negative and positive control treatments, respectively. It concluded that P. florescence in combination with 3% dry biomass of C. arvensecan control black scurf disease and enhance potato yield.

 

Keywords: Bacillus megaterium; black scurf; Cirsium arvense; potato; PGPR; Pseudomonas fluorescence

Abstrak

Kentang (Solanum tuberosum L.) ialah tanaman kontan yang penting di Pakistan. Scurf hitam kentang adalah penyakit yang sangat penting yang disebabkan oleh Rhizoctonia solani Kühn. Dalam kajian ini, pengurusan scurf hitam kentang dilakukan melalui kaedah biokawalan dengan menggunakan rizobakteria penggalak pertumbuhan tumbuhan (PGPR) dan biojisim kering rumpai, Cirsium arvense (L.) Scop. Interaksi antagonis in vitro telah dijalankan untuk menilai potensi dua strain PGPR iaitu Bacillus megaterium ZMR6 dan Pseudomonas fluorescence PF180 terhadap pertumbuhan kulat. P. flourescens menunjukkan aktiviti antagonis yang ketara menyebabkan 65% pengurangan dalam pertumbuhan kulat berbanding pengurangan 43% disebabkan oleh B. megaterium. Begitu juga, dalam bioasai makmal, ekstrak metanol 2, 4 dan 6% kepekatan daun, batang dan akar C. arvense mengurangkan biojisim R. solani masing-masing sebanyak 64-71%, 42-53% dan 26-47%. Dalam uji kaji pasu, dua spesies PGPR dan dos berbeza C. arvense biojisim kering (CDB) iaitu 1, 2 dan 3% (b/b) digunakan sebagai pindaan tanah secara berasingan serta dalam gabungan untuk mengawal penyakit. Terdapat 13 rawatan, termasuk kawalan negatif; kawalan positif (R. solani sahaja); 1, 2 dan 3% CDB (berasingan) bersama R. solani, dua spesies PGPR (berasingan) ditambah R. solani; gabungan berbeza dua spesies PGPR dan CDB bersama R. solani. Varieti kentang Sante digunakan sebagai tumbuhan uji. Insiden penyakit tertinggi (91%) dan keterukan penyakit (skala penarafan 4) diperhatikan dalam kawalan positif (dengan R. solani sahaja). R. solani dengan ketara mengurangkan biojisim ubi sebanyak 52% berbanding kawalan negatif. Semua rawatan meningkatkan biojisim ubi dengan ketara sebanyak 18-166% berbanding kawalan positif. Gabungan terbaik ialah 3% CDB + P. florescence dengan kejadian penyakit minimum (3%) dan keterukan (min rating penyakit 0.2) direkodkan. Rawatan ini juga menunjukkan hasil ubi yang paling tinggi masing-masing iaitu 29% dan 166% lebih tinggi berbanding rawatan kawalan negatif dan positif. Ia membuat kesimpulan bahawa P. florescence dalam gabungan dengan 3% biojisim kering C. arvense boleh mengawal penyakit scurf hitam dan meningkatkan hasil kentang.

 

Kata kunci: Bacillus megaterium; Cirsium arvense; kentang; PGPR; Pseudomonas fluorescence; scurf hitam

 

RUJUKAN

Abbas, A., Khan, S.U., Khan, W.U., Saleh, T.A., Khan, M.H.U., Ullah, S. & Ikram, M. 2019. Antagonist effects of strains of Bacillus spp. against Rhizoctonia solani for their protection against several plant diseases: Alternatives to chemical pesticides. Comptes Rendus Biologies 342: 124-135.

Ahmed, I., Soomro, M.H., Khalid, S., Iftikhar, S., Munir, A. & Burney, K. 1995. Recent distributional trends of potato diseases in Pakistan. National Seminar on Research and Development of Potato Production in Pakistan, April 23-25, NARC, PSPDP, PARC, Islamabad, Pakistan.

Akhtar, R. & Javaid, A. 2018. Biological management of basal rot of onion by Trichoderma harzianumand Withania somnifera. Planta Daninha 36: e017170507.

Akhter, W., Bhuiyan, M.K.A., Sultana, F. & Hossain, M.M. 2015. Integrated effect of microbial antagonist, organic amendment and fungicide in controlling seedling mortality (Rhizoctonia solani) and improving yield in pea (Pisum sativum L.). Comptes Rendus Biologies 338: 21-28.

Amiri, N., Yadegari, M. & Hamedi, B. 2018. Essential oil composition of Cirsium arvense L. produced in different climate and soil properties. Records of Natural Products 12: 251-262.

Anser, M.R., Ahmad, I., Shah, S.H., Abuzar, M.K., Raza, M.S. & Malik, M.A. 2018. Weed control measures for controlling the density of Canada thistle (Cirsium arvense (L.) Scop. in wheat (Triticum aestivum L.). Pakistan Journal of Botany 50: 355-363.

Ayyanar, K., Mohan, L., Harish, S., Radjacommare, R., Amutha, G., Chitra, K., Karuppiah, R., Mareeswari, P., Rajinimala, N. & Angayarkanni, T. 2004. Biocontrol agents induce disease resistance in Phyllanthus niruri Linn. against damping-off disease caused by Rhizoctonia solani. Phytopathologia Mediterranea 43: 187-194.

Banaras, S., Javaid, A. & Khan, I.H. 2021. Bioassays guided fractionation of Ageratum conyzoides extract for the identification of natural antifungal compounds against Macrophomina phaseolina. International Journal of Agriculture and Biology 25(4): 761-767.

Banaras, S., Javaid, A. & Khan, I.H. 2020. Potential antifungal constituents of Sonchus oleraceousagainst Macrophomina phaseolina. International Journal of Agriculture and Biology 24(5): 1376-1382.

Banaras, S., Javaid, A. & Shoaib, A. 2020. Non-chemical control of charcoal rot of urdbean by Sonchus oleraceousapplication. Planta Daninha38: e020216088.   

Banaras, S., Javaid, A., Shoaib, A. & Ahmed, E. 2017. Antifungal activity of Cirsium arvense extracts against a phytopathogenic fungus Macrophomina phaseolina. Planta Daninha 35: e017162738.

Donald, W.W. 1994. The biology of Canada thistle (Cirsium arvense). Rev. Weed Sciences6: 77-101.

Dourado, C., Pinto, C., Barba, F.J., Lorenzo, J.M., Delgadillo, I. & Saraiva, J.A. 2019. Innovative non-thermal technologies affecting potato tuber and fried potato quality. Trends in Food Science & Technology 88: 274-289.

Etesami, H. & Adl, S.M. 2020. Plant growth-promoting rhizobacteria (PGPR) and their action mechanisms in availability of nutrients to plants. In Phyto-Microbiome in Stress Regulation. Environmental and Microbial Biotechnology, edited by Kumar, M., Kumar, V. & Prasad, R. Singapore: Springer. pp. 147-203.

Goswami, D., Thakker, J.N. & Dhandhukia, P.C. 2016. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food Agriculture 2: 1127500.

Hussain, T. & Khan, A.A. 2020. Bacillus subtilis Hussain T-AMU and its antifungal activity against potato black scurf caused by Rhizoctonia solani on seed tubers. Biocatalysis Agricultural Biotechnology 23: 101443.

Jabeen, N., Javaid, A., Shoaib, A. & Khan, I.H. 2021. Management of southern blight of bell pepper by soil amendment with dry biomass of Datura metel. Journal of Plant Pathology 103(3): 901-913.

Javed, S., Mahmood, Z., Khan, K.M., Sarker, S.D., Javaid, A., Khan, I.H. & Shoaib, A. 2021. Lupeol acetate as a potent antifungal compound against opportunistic human and phytopathogenic mold Macrophomina phaseolina. Scientific Reports 11: 8417.     

Karasakal, A., Demirci, A.Ş., Demirok, N.T. & Cabi, E. 2015. Antioxidant, antimicrobial activities and total flavonoid contents of Cirsium bulgaricum DC. leaf extracts. Marmara Pharmaceutical Journal 19: 43-51.   

Khan, A., Amin, A., Khan, M.A. & Ali, I. 2011a. In vitro screening of Cirsium arvense for potential antibacterial and antifungal activities. Pakistan Journal of Pharmaceutical Sciences 24: 519-522.

Khan, Z.U.H., Ali, F., Khan, S.U. & Ali, I. 2011b. Phytochemical study on the constituents from Cirsium arvense. Mediterranean Journal of Chemistry 2: 64-69.                                                                                           

Khan, I.H. & Javaid, A. 2020. Comparative antifungal potential of stem extracts of four quinoa varieties against Macrophomina phaseolinaInternational Journal of Agriculture & Biology 24: 441-446.

Khan, M.F., Nakano, Y. & Kurosaki, T. 2019. Impact of contract farming on land productivity and income of maize and potato growers in Pakistan. Food Policy 85: 28-39.

Khedher, S.B., Kilani-Feki, O., Dammak, M., Jabnoun-Khiareddine, H., Daami-Remadi, M. & Tounsi, S. 2015. Efficacy of Bacillus subtilis V26 as a biological control agent against Rhizoctonia solani on potato. Comptes Rendus Biologies Journal 338: 784-792.

Koc, S., Isgor, B.S., Isgor, Y.G., Shomali, M.N. & Yildirim, O. 2015. The potential medicinal value of plants from Asteraceae family with antioxidant defense enzymes as biological targets. Pharmaceutical Biology 53: 746-751.

Mannaa, M. & Kim, K.D. 2018. Biocontrol activity of volatile-producing Bacillus megaterium and Pseudomonas protegens against Aspergillus and Penicillium spp. predominant in stored rice grains: Study II. Mycobiology 46(1): 52-63.

Mihaela, R.F. 2014. Chemical studies on plants of Cirsium arvense species. PhD Thesis. Craiova: University of Medicine and Pharmacy of Craiova.

Majeed, A. & Muhammad, Z. 2020. An overview of the common bacterial diseases of potato in Pakistan, associated crop losses and control stratagems. Journal of Plant Pathology 102: 3-10.

Neela, S. & Fanta, S.W. 2019. Review on nutritional composition of orange‐fleshed sweet potato and its role in management of vitamin A deficiency. Food Science & Nutrition Research 7: 1920-1945.

Norton, N.A. 2000. Botanical heritage of dermatology. In Dermatologic Botany, edited by Avalos, J. & Maibach, H.I. Boca Raton: CRC Press.

Popova, Y.V., Mazulin, O.V., Mazulin, G.V. & Oproshanska, T.V. 2018. The phytochemical investigation of polyphenolic composition of herbs Cirsium arvense (L.) Scop. of Ukraine flora. Farmatsevtychnyi Zhurnal 2: 83-87.

Rafiq, M., Javaid, A. & Shoaib, A. 2021. Antifungal activity of methanolic leaf extract of Carthamus oxycanthaagainst Rhizoctonia solani. Pakistan Journal of Botany 53(3): 1133-1139.

Rafiq, M., Shoaib, A., Javaid, A., Perveen, S., Umer, M., Arif, M. & Cheng, C. 2024. Exploration of resistance level against black scurf caused by Rhizoctonia solani in different cultivars of potato. Plant Stress 12: 100476.

Romero, D., Perez-Garcia, A., Veening, J.W., de Vicente, A. & Kuipers, O.P. 2007. Transformation of undomesticated strains of Bacillus subtilis by protoplast electroporation. Journal of Microbiological Method 66: 556-559.

Sadat-Hosseini, M., Farajpour, M., Boroomand, N. & Solaimani-Sardou, F. 2017 Ethnopharmacological studies of indigenous medicinal plants in the south of Kerman, Iran. Journal of Ethnopharmacology 199: 194-204.

Sahni, S., Prasad, B.D. & Ranjan, T. 2019. Biocontrol of Sclerotium rolfsii using antagonistic activities of pseudomonads. Current Journal of Applied Science & Technology 35(5): 1-9.

Salamone, A.L. & Okubara, P.A. 2020. Real-time PCR quantification of Rhizoctonia solani AG-3 from soil samples. Journal of Microbiological Methods 172: 105914.

Saraf, M., Pandya, U. & Thakkar, A. 2014. Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiological Research 169: 18-29.

Selim, H.M., Gomaa, N.M. & Essa, A.M. 2017. Application of endophytic bacteria for the biocontrol of Rhizoctonia solani (Cantharellales: ceratobasidiaceae) damping-off disease in cotton seedlings. Biological Sciences & Technology 27: 81-95.

Shanmugam, V., Ramanathan, A. & Samiyappan, R. 2002. Interaction of Pseudomonas fluorescens with Rhizobium for their effect on the management of peanut root rot. Phytoparasitica 30: 169-176.

Sharf, W., Javaid, A., Shoaib, A. & Khan, I.H. 2021. Induction of resistance in chili against Sclerotium rolfsiiby plant growth promoting rhizobacteria and Anagallis arvensis. Egyptian Journal of Biological Pest Control 31: 16.

Shoda, M. 2000. Bacterial control of plant diseases. Journal of Biosciences & Bioengineering 89: 515-521.

Swain, H., Naik, S.K. & Mukherjee, A.K. 2019. Comparative analysis of different biotic and abiotic agents for growth promotion in rice (Oryza sativa L.) and their effect on induction of resistance against Rhizoctonia solani: A soil borne pathogen. Journal of Biological Control 133: 123-133.

Xiang, N., Lawrence, K.S., Kloepper, J.W., Donald, P.A., McInroy, J.A. & Lawrence G.W. 2017. Biological control of Meloidogyne incognita by spore-forming plant growth promoting rhizobacteria on cotton. Plant Disease 101: 774-784.

Yang, S., Min, F., Wang, W., Wei, Q., Guo, M., Gao, Y. & Lu, D. 2017. Anastomosis group and pathogenicity of Rhizoctonia solani associated with stem canker and black scurf of potato in Heilongjiang Province of China. American Journal of Potato Research 94: 95-104.

Yu, Y.Y., Jiang, C.H., Wang, C., Chen, L.J., Li, H.Y., Xu, Q. & Guo, J.H. 2017. An improved strategy for stable biocontrol agents selecting to control rice sheath blight caused by Rhizoctonia solaniMicrobiological Research 203: 1-9.

Zohora, U.S., Ano, T. & Rahman, M.S. 2016. Biocontrol of Rhizoctonia solani K1 by iturin A producer Bacillus subtilis RB14 seed treatment in tomato plants. Advances of Microbiology 6: 424.

 

*Pengarang untuk surat-menyurat; email: uzma.iags@pu.edu.pk

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

sebelumnya